报告题目:Review of Distributed Statistical Inference(分布式统计分析)
报告时间:2021年6月25日下午1点30分
报告形式:腾讯会议
会议链接:https://meeting.tencent.com/s/uunq7ey0KRtV
会议 ID:753 516 304
主办单位:科研处/437必赢会员中心网页版
主讲人:张日权
张日权简介:华东师范大学,统计学院院长;教育部统计与数据科学前沿理论及应用重点实验室主任,《应用概率统计》期刊常务副主编,中国现场统计研究会大数据统计分会理事长,中国商业统计学会数据科学与商业智能分会 副理事长,上海统计学会副会长。主要研究方向:大数据统计,金融统计,非/半参数统计,超/高维数据分析,函数型数据分析、统计机器学习。
摘 要:The rapid emergence of massive datasets in various fields poses a serious challenge to traditional statistical methods. Meanwhile, it provides opportunities for researchers to develop novel algorithms. Inspired by the idea of divide-and-conquer, various distributed frameworks for statistical estimation and inference have been proposed. They were developed to deal with large-scale statistical optimization problems. This report aims to provide a comprehensive review for related literature. It includes parametric models, nonparametric models, and other frequently used models. Their key ideas and theoretical properties are summarized. The trade-off between communication cost and estimate precision together with other concerns are discussed.